
DARE TO COMPARE
Tailoring PROC COMPARE Output

Maria Y. Reiss, Wyeth Pharmaceuticals, Collegeville, PA

INTRODUCTION

The COMPARE procedure is the SAS� tool for comparing two
SAS data sets against each other. A tool to compare data sets is,
of course, useful to SAS users. However, the default output from
PROC COMPARE is very lengthy. To allow users to tailor their
output, PROC COMPARE provides thirty-seven different options.
This paper explains how to use the PROC COMPARE options to
produce streamlined, focused reports of data set differences.
This paper also explains two of the advanced features of PROC
COMPARE:
• writing the output to a data set
• parsing the system return code from PROC COMPARE.

USING PROC COMPARE TO LOG AND CHECK
DATA CHANGES

One application of PROC COMPARE is logging and checking
changes to a SAS data set. You can use PROC COMPARE to
compare the data set before and after editing to make sure that
the desired changes were made correctly and that no
unintentional changes were made. SAS 8.2 has a new audit trail
feature designed for this purpose. However, the new audit trail
has limitations. For example, the audit trail feature is “not
appropriate for data sets that are rebuilt using the DATA step or
the SQL procedure.” 2 So you may prefer to use PROC
COMPARE in place of the audit trail facility to log data changes.

WAYS THAT SAS DATA SETS CAN DIFFER

The PROC COMPARE documentation lists the following ways
that SAS data sets can differ:

1. A variable can have different values in two observations
being compared.

2. One data set can contain observations not in the other data
set.

3. Data sets can contain different variables.
4. A variable can have structural differences in the two data

sets such as different
• informats
• formats
• lengths
• labels
• types

5. The labels of the two data sets can differ.
6. The types of the two data sets can differ.
7. The data sets can have BY group differences. For example,

one data set can have a BY group that is not in the other
data set. This type of difference will also appear in item #2
above (observation differences between data sets).

In this paper, I am not covering items #5, #6, and #7. Items #5
and #6 can be checked using PROC CONTENTS or PROC
DATASETS, while item #7 is redundant with item #2.

DEFAULT PROC COMPARE

The simplest PROC COMPARE call you can make is:

proc compare base = base-data-set
compare = compare-data-set;

run;

PROC COMPARE uses the terms “base data set” and “compare
data set” to distinguish the two SAS data sets being compared.

This code will produce a lengthy report of all the differences
between the two data sets. SAS will compare the data sets
observation by observation in the order that the observations
appear in the data sets. In other words, observation #1 from the
base data set will be compared to observation #1 from the
compare data set, etc.

The default PROC COMPARE call will produce the following
summary reports:
• Data Set Summary
• Variables Summary
• Observation Summary
• Values Comparison Summary

After the four default summary reports, PROC COMPARE
produces the reports:
• Variables with Unequal Values
• Value Comparison Results for Variables

CUSTOMIZING PROC COMPARE

The first step in customizing PROC COMPARE is to use the ID
statement. The ID statement lists the key variables that uniquely
identify the observations in your data sets. With the ID statement,
PROC COMPARE compares observations that match on the ID
variables.

Using the ID statement requires that the data sets be sorted by
the ID variables or have an appropriate index. Also, if the ID
variables do not uniquely identify the observations, PROC
COMPARE will generate WARNING messages in the log for the
duplicate observations. For the most accurate use of PROC
COMPARE, choose ID variables that uniquely identify the
observations.

proc compare base = base-data-set
compare = compare-data-set;

id key-variable-1 … key-variable-n;
run;

PROC COMPARE allows the use of a WHERE clause to subset
the data being compared. For example:

proc compare base = base-data-set
compare = compare-data-set;

id key-variable-1 … key-variable-n;
where variable-1 in (‘value-1’, ‘value-2’,

‘value-3’);
run;

You can also customize PROC COMPARE to limit the report
output to
• a values comparison report.
• a report of observation differences.
• a report of variable mismatches.
• a report of structural differences between variables.



PRODUCING A VALUES COMPARISON REPORT

PROC COMPARE does not provide many options for shortening
the report of value differences. The options that affect this type of
report are:

briefsummary Prints only a short comparison summary
nosummary Suppresses the summary reports
transpose Prints the value differences by observation,

not by variable.
Note that the transpose option does not
shorten the output from PROC COMPARE.
In fact, it may lengthen the output. However,
I personally find the report easier to read in
transpose format.

nomissbase Judges a missing value in the base data set
equal to any value.

nomisscomp Judges a missing value in the comparison
data set equal to any value.

To produce a values comparison report, use the code:

proc compare base = base-data-set
compare = compare-data-set
nosummary transpose;

id id-variables;
run;

An example of the output is in Appendix 1.

For each value difference, PROC COMPARE prints a row listing
the ID variables and the variable’s value in both the BASE and
COMPARE data sets. For character variables, PROC COMPARE
only prints the first 20 characters of the variable’s value. If the
difference in the variable’s value in the BASE and COMPARE
data sets lies past the 20th character, the variable will still be listed
in the Values Comparison report, but the value difference will not
be displayed. The only way that PROC COMPARE will display
character value differences past the 20th character is by writing
the PROC COMPARE output out to a data set using the OUT=
option.

PRODUCING A REPORT OF OBSERVATION
DIFFERENCES

PROC COMPARE provides the following options to allow you to
produce a report of observation differences.

nosummary Suppresses the summary reports
novalues Suppresses the value comparison results.
listobs Lists all observations found in only one data

set.
listall Lists all variables and observations found in

only one data set.
listbase Lists all variables and observations found

only in the base data set.
listbaseobs Lists all observations found only in the base

data set.
listcomp Lists all variables and observations found

only in the comparison data set.
listcompobs Lists all observations found only in the

comparison data set.

To produce a report of observation differences, use the code:

proc compare base = base-data-set
compare = compare-data-set
nosummary novalues listobs;

id id-variables;
run;

An example of the output is in Appendix 2.

PRODUCING A REPORT OF VARIABLE
MISMATCHES IN THE DATA SETS

PROC COMPARE provides the following options to that allow you
to produce a report of variable mismatches.

nosummary Suppresses the summary reports
novalues Suppresses the value comparison results.
listvar Lists all variables found in only one data set.
listall Lists all variables and observations found in

only one data set.
listbase Lists all variables and observations found

only in the base data set.
listbasevar Lists all variables found only in the base data

set.
listcomp Lists all variables and observations found

only in the comparison data set.
listcompvar Lists all variables found only in the

comparison data set.

To produce a report of variable mismatches, use the code:

proc compare base = base-data-set
compare = compare-data-set
nosummary novalues listvar;

id id-variables;
run;

An example of the output is in Appendix 3.

If there are variable mismatches, then the code will generate a
report of the variable mismatches and a report of the structural
differences between variables. However, if there are no variable
mismatches, the code will not generate a report of the structural
differences between variables even if such differences exist.

PRODUCING A REPORT OF STRUCTURAL
DIFFERENCES BETWEEN VARIABLES

There are two ways to generate of report of structural differences
(such as informat, format, length, label, and type) between
variables.

1. Run a PROC COMPARE with the novalues option.
There is no way to limit the output to only list structural
differences between variables.

2. Process PROC CONTENTS output.3

proc contents data = base-data-set
out = base-contents noprint; run;

proc contents data = compare-data-set
out = compare-contents noprint; run;

proc compare base = base-contents
compare = compare-contents
briefsummary transpose;

id name ;
var length type format informat label;

run;

Note: In this code, the variable names are case-sensitive. If the
variable name is lower-case in the base data set and upper-case
in the compare data set, then they will not match up with the “id
name” statement. They will be considered as two separate
variables.
An example of the output is in Appendix 4.



OTHER USEFUL PROC COMPARE OPTIONS

PROC COMPARE has two options, VAR and WITH, that can be
used together to

1. Compare variables with different names in two data sets.

proc compare base = base-data-set
compare = compare-data-set
nosummary;

var base-variable;
with compare-variable;
title 'Comparison of Vars with Different Names';

run;

2. Compare a single variable with multiple variables.

proc compare base = base-data-set
compare = compare-data-set
nosummary;

var base-variable base-variable;
with compare-variable-#1 compare-variable-#2;
title1 'Compare One Variable (base-variable)’;
title2 ‘with Two Variables (compare-variable-

#1 and compare-variable-#2)';
run;

3. Compare a variable with another variable in the same data
set.

proc compare base = base-data-set
nosummary;

var base-variable-#1;
with base-variable-#2;
title 'Comparison of Variables in the Same

Data Set';
run;

FUZZ
You can enter values from 0 through 1 for the FUZZ option. In
the Values Comparison Report, PROC COMPARE will print 0 for
any variable value that is less than the FUZZ value. It will also
print a blank for the difference column in the Values Comparison
Report. However, it will still print an entry in the Values
Comparison Report for every variable value and difference that is
less than the FUZZ number. So this option will not shorten the
Values Comparison Report.

See Appendix 5 for an example of a Values Comparison Report
with FUZZ=0.5.

CRITERION
This option “specifies the criterion for judging the equality of
numeric values.” (from SAS OnlineDOC�) The Online SAS
document states that the default value of criterion is 0.00001.
I have found this option useful when comparing SAS data sets
that have been created on different operating systems. The
numeric variables in data sets created on different operation
systems may differ slightly in value due to differences in numeric
precision on the different operation systems. As stated in SAS
Technical Support document 654, “It is not uncommon to get
slightly different results between operating systems whose
floating point representation components differ (i.e. MVS and PC,
MVS and UNIX). Some problems with numeric precision arise
because the underlying instructions that each operating system
uses to do addition, multiplication, division, etc. are slightly
different. There is no standard method for doing computations
since all operating systems attempt to compute numbers as
accurately as possible.” 4

If you are using PROC COMPARE to compare numeric variables
from data sets created on different operation systems, and your
PROC COMPARE report is very lengthy due to miniscule
precision differences in the numeric variables, you can use the
CRITERION option to shorten the output. The PROC COMPARE
documentation recommends setting CRITERION to -1000 to
suppress listings of differences that are the results of differences
in the machine level of precision.

ADVANCED PROC COMPARE FEATURES

Writing to an Output Data Set

PROC COMPARE provides options that allow you to write the
output to an output data set. The output data set can contain four
different types of observations, each type distinguished by the
value of the _TYPE_ variable. The four types are:
1. BASE – the observation in the base data set.
2. COMPARE – the observation in the compare data set.
3. DIF – an observation showing the differences between the

base and compare data sets. For character variables, the
DIF observation contains a period or an X for every
character in the variable. A period indicates that the
variables match at that position in the variable. An X
indicates that the variables do not match at that position in
the variable. For numeric variables, the DIF observation
contains an E if the variables match. If the numeric variables
do not match, the DIF observation contains the difference in
the values in the base and compare data sets.

4. PERCENT – an observation showing the percentage
differences in values between the base and compare data
sets.

As stated earlier, the Values Comparison Report from PROC
COMPARE does not display character value differences past the
20th character. The only way to display character value
differences past the 20th character is by writing the PROC
COMPARE output out to a data set. 5

Example:

Dataset #1 contains the following data:
ID NAME ADDRESS
011 REISS REALLY REALLY REALLY REALLY LONG ADDRESS
026 WILLIAMS 272 Monmouth Drive
028 SMITH Unknown

Dataset #2 contains the following data:
ID NAME ADDRESS
011 REISS REALLY REALLY REALLY REALLY LONG NAME
026 WILLIAMS 272 Monmouth Drive
028 SMITH Unknown

To produce a report showing data differences past the 20th

character of a character variable, use the code:

proc compare base = data-set-#1
compare = data-set-#2
noprint out=comp_out
outbase outcomp outdiff;

id id;
title1 "Comparison of DS1 and DS2";

run;

proc print data = comp_out width=min;
where id = 11;

run;

The output from this PROC PRINT (for ID 011 showing
ADDRESS variable only) is:



_TYPE_ ADDRESS
BASE REALLY REALLY REALLY REALLY LONG ADDRESS
COMPARE REALLY REALLY REALLY REALLY LONG NAME
DIF .................................XXXXXXX...

The BASE observation shows the data from the base data set
(data set #1). The COMPARE observation shows the data from
the compare data set (data set #2). The DIF observation shows
the differences between the base and compare data sets.
Periods in the character variables indicate that the variables
match at that position in the variable. Xs in the character
variables indicate that the variables do not match at that position
in the variable. 5

Return Code from PROC COMPARE

PROC COMPARE returns a return code in the system macro
variable SYSINFO. The values in SYSINFO are stored so that
the binary value of SYSINFO indicates which differences exist
between the two data sets. You can determine the data set
differences by testing SYSINFO using bit-testing within a DATA
step.

The values of SYSINFO are:

Condition
Value of

SYSINFO Bit

Value to Use
for

Bit-Test
Data set labels differ 1 = 20 0 ‘1’b
Data set types differ 2 = 21 1 ‘1.’b
Variable has different
infomat

4 = 22 2 ‘1..’b

Variable has different
format.

8 = 23 3 ‘1…’b

Variable has different length. 16 = 24 4 ‘1….’b
Variable has different label. 32 = 25 5 ‘1…..’b
Base data set has
observation not in
comparison.

64 = 26 6 ‘1……’b

Comparison data set has
observation not in base.

128 = 27 7 ‘1…….’b

Base data set has BY group
not in comparison.

256 = 28 8 ‘1……..’b

Comparison data set has BY
group not in base.

512 = 29 9 ‘1………’b

Base data set has variable
not in comparison.

1024 = 210 10 ‘1……….’b

Comparison data set has
variable not in base.

2048 = 211 11 ‘1………..’b

A value comparison was
unequal.

4096 = 212 12 ‘1…………’b

Conflicting variable types. 8192 = 213 13 ‘1………….’b
BY variables do not match. 16384 = 214 14 ‘1…………..’b
Fatal error: comparison not
done.

32768 = 215 15 ‘1……………’b

An example of using bit-testing of the SYSINFO value from PROC
COMPARE is:

proc compare … etc.

%let rc=&sysinfo;
data _null_;
* Check if SYSINFO has a 1 in the 212

position of its binary value.;
if &rc=‘1…………’b then
put ‘At least 1 value comparison was unequal’;

run;

EXAMPLES

I. USING PROC COMPARE TO LOG DATA CHANGES

You can use PROC COMPARE to create a log of data edits.

Example:

Version 01 of the PAYROLL data contains the following data:
ID SALARY
011 245
026 269
028 374
034 333
057 582
060 100

The data manager creates Version 02 of the PAYROLL data with
edits:

data payrollv02;
set payrollv01;

if id=057 then salary=600;
if id=026 then delete;

run;

To produce a report of the edits, use the code:

title1 "Differences Between PAYROLLV02 and
PAYROLLV01";
proc compare base = payrollv01

compare = payrollv02
briefsummary listall transpose;

id id;
run;

See Appendix 6 for the output from this PROC COMPARE.

II. USING PROC COMPARE TO FIND UNINTENDED
CHANGES

When merging two data sets that contain a common variable with
different lengths in the two data sets, SAS will take the length
from the first data set in the MERGE statement. If the variable
has a shorter length in the first data set, this can cause values
from the second data set to be truncated in the merged data set.

Example:

Data Set 1- LNAME Has Length $10

ID LNAME SALARY
11 REISS 376
26 WILLIAMS 900
28 SMITH 777

Data Set 2 - LNAME Has Length $17

ID LNAME
11 REISS
26 WILLIAMS
28 SMITH
34 HOSKINSON-ALVAREZ
57 JONES
60 BROWN

These two data sets are merged using the code:

data mergedata;
merge ds1

ds2;



by id;
run;

The variable LNAME in the resulting data set MERGEDATA has
length $10. The PROC COMPARE code

proc compare base = ds2
compare = mergedata
briefsummary;

id id;
title1 "Comparison of DS2 and MERGEDATA";

run;

produces output that shows that the variable LNAME has been
truncated for the record with ID 34.

NOTE: Values of the following 1 variables
compare unequal: LNAME

Value Comparison Results for Variables

________________________________________________
|| Base Value Compare Value

ID || LNAME LNAME
_______ || _________________ __________

||
34 || HOSKINSON-ALVAREZ HOSKINSON-

________________________________________________

III. USING PROC COMPARE TO DETERMINE CHANGES
THAT WOULD BE MADE WITH UPDATE STATEMENT

You can use the PROC COMPARE option NOMISSCOMP to
print a list of the changes that will be made to a master data set in
a DATA step UPDATE statement.

For example, the DATA step statements

data newpay;
update payroll increase;
by id;

run;

will update the master data set PAYROLL with values from the
transaction data set INCREASE according to the rules of the
UPDATE statement. 6

To see in advance what changes will be made to the master data
set PAYROLL, run the following PROC COMPARE prior to
running the DATA step UPDATE statement.

proc compare base = payroll
compare = increase
nosummary nomisscomp;

id id;
run;

An example of the output is in Appendix 7.

TAILORED PROC COMPARE OUTPUT VERSUS
FULL PROC COMPARE OUTPUT

If you want to produce a full report of the differences between two
data sets, it is more efficient to run the default PROC COMPARE.
However, if you are interested in narrowing the output of your
report to a Values Comparison report, an Observation Differences
report, or a Variable Differences report, then it is more efficient to
use PROC COMPARE options to limit your report.

In a test comparing two data sets where each data set contained
26,192 observations and 40 variables on a Solaris 5.8 operating
system, the default PROC COMPARE took 2.36 seconds of real
CPU time. Comparing the same data sets using PROC
COMPARE options to specifically produce a Values Comparison
report, an Observation Differences report, and a Variable
Differences report took 3.17 seconds of real CPU time.

See Appendix 8 for a listing of a macro that produces tailored
PROC COMPARE output. This macro also uses bit-testing of the
return code from PROC COMPARE to produce a summary report
of data set differences.

CONCLUSION

The COMPARE procedure provides many options for tailoring its
output. This paper provides an explanation of the most useful
options. This paper also provides examples of the practical
usage of the COMPARE procedure.

REFERENCES

(1) SAS Institute Inc. (1999), SAS OnlineDOC�, Version 8,
Chapter 9, The COMPARE Procedure; pp 221-266, Cary, NC:
SAS Institute Inc.

(2) Thielbar, Melinda. “Hey, Who Changed My Data?” SAS Bits &
Bytes. February 2003.
<http://support.sas.com/sassamples/bitsandbytes/0208_audit.htm
> (May 6, 2003).

(3) Crawford, Peter. “Comparing Variables of Two Data Sets and
Outputting the Differences” The FAQChest January 2003
<http://www.faqchest.com/appl/sas-l/sas-03/sas-0301/sas-
030110/sas03011016_26153.html >

(4) “Numeric Precision 101” SAS Institute Inc. Technical Support
Documents
<http://ftp.sas.com/techsup/download/technote/ts654.html>

(5) “How can I use PROC COMPARE to produce a report that
shows the differences between two character values past the 20th

character?” SAS Institute Inc. Technical Support Documents
<http://support.sas.com/techsup/technote/ts440.pdf>

(6) SAS Institute Inc. (1999), SAS OnlineDOC�, Version 8,
Chapter 24, Reading, Combining, and Modifying SAS Data Sets;
pp 348-357, Cary, NC: SAS Institute Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:
Maria Y. Reiss
Wyeth Research
500 Arcola Road
Collegeville, PA 19426
Email: reissm@wyeth.com
Phone: (484) 865-5694

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. � indicates USA registration.
Other brand and product names are registered trademarks or
trademarks of their respective companies.



APPENDIX 1 – Sample Values Comparison Report

The COMPARE Procedure
Comparison of WORK.PHYSEXAM1 with WORK.PHYSEXAM2

(Method=EXACT)

Comparison Results for Observations

DRUGID=0468 PROTID=220 PATIENT=000101 VISITDT=20SEP2000:00:00:00
bdysys=:
Variable Base Value Compare Diff. % Diff
RDCMID 559885501 560679801 794300 0.141868
DCMQGID 2697201 2676901 -20300 -0.752632
RCDCMID 559885501 560679801 794300 0.141868
DCNUM 2096785401 2096874801
DCM PHYSICAL EXA DEMOGRAPHY

QLVALUE Screening,2 Screening
DCMDESC PHYSICAL EXA DEMOGRAPHY

var1 Test 1 Test 2

APPENDIX 2 – Sample Observation Differences Report

The COMPARE Procedure
Comparison of WORK.PHYSEXAM1 with WORK.PHYSEXAM2

(Method=EXACT)

Comparison Results for Observations

Observation 193 in WORK.PHYSEXAM1 not found in WORK.PHYSEXAM2:
DRUGID=0468 PROTID=220 PATIENT=000102 VISITDT=05OCT2000:00:00:00
bdysys=.

Observation 194 in WORK.PHYSEXAM1 not found in WORK.PHYSEXAM2:
DRUGID=0468 PROTID=220 PATIENT=000102 VISITDT=05OCT2000:00:00:00
bdysys=Abdomen.

Observation 195 in WORK.PHYSEXAM1 not found in WORK.PHYSEXAM2:
DRUGID=0468 PROTID=220 PATIENT=000102 VISITDT=05OCT2000:00:00:00
bdysys=Chest.

Observation 196 in WORK.PHYSEXAM1 not found in WORK.PHYSEXAM2:
DRUGID=0468 PROTID=220 PATIENT=000102 VISITDT=05OCT2000:00:00:00
bdysys=Ears.

NOTE: Data set WORK.PHYSEXAM1 contains 4 observations not in WORK.PHYSEXAM2.
NOTE: Values of the following 14 variables compare unequal: DCNUM DCM RDCMID DCMQGID QLVALUE RPTSN
REGIMEN CPENM VISIT SUBVST INVEST DCMDESC RCDCMID var1

APPENDIX 3 – Sample Variable Mismatches Report

Variables Found in Only One of the Data Sets physexam1 and physexam2

The COMPARE Procedure
Comparison of WORK.PHYSEXAM1 with WORK.PHYSEXAM2

(Method=EXACT)

Listing of Variables in WORK.PHYSEXAM1 but not in WORK.PHYSEXAM2

Variable Type Length Format Informat Label

STINT Char 30 $30. $30. planned study interval name
TGTPNT Num 8 interval midpoint

Listing of Variables in WORK.PHYSEXAM2 but not in WORK.PHYSEXAM1

Variable Type Length Format Informat Label

UNIQSUBJ Char 21 GPSLH - Unique Subject/Patient (the latest)



UNIQSITE Char 10 GPSLH - Unique Study Site (the latest)
AGE Num 8 Age
AGEU Char 20 $20. $20. Age Unit

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length

var1 WORK.PHYSEXAM1 Char 12
WORK.PHYSEXAM2 Char 8

NOTE: Data set WORK.PHYSEXAM1 contains 32 observations not in WORK.PHYSEXAM2.
NOTE: Values of the following 14 variables compare unequal: DCNUM DCM RDCMID DCMQGID QLVALUE RPTSN
REGIMEN CPENM VISIT SUBVST INVEST DCMDESC RCDCMID var1

APPENDIX 4 – Sample Report of Structural Differences Between Variables

Comparing PROC CONTENTS of Datasets physexam1 and physexam2
To Find Variable Differences in LENGTH, TYPE, FORMAT, INFORMAT, and LABEL

The COMPARE Procedure
Comparison of WORK._BASE_CONTENTS with WORK._COMP_CONTENTS

(Method=EXACT)

Comparison Results for Observations

NAME=var1:
Variable Base Value Compare Diff. % Diff
LENGTH 12.000000 8.000000 -4.000000 -33.333333

NOTE: Data set WORK._BASE_CONTENTS contains 2 observations not in WORK._COMP_CONTENTS.
NOTE: Data set WORK._COMP_CONTENTS contains 30 observations not in WORK._BASE_CONTENTS.
NOTE: Values of the following 1 variables compare unequal: LENGTH

APPENDIX 5 – Sample Report Using the FUZZ Option

Note: In this example, the variable VAR1 has a value of 0.1 in the Base data set and a value of 0.4 in the Compare data set. FUZZ is set to 0.5

The COMPARE Procedure
Comparison of WORK.PHYSEXAM1 with WORK.PHYSEXAM2

(Method=EXACT)

Comparison Results for Observations

DRUGID=0468 PROTID=220 PATIENT=000101 VISITDT=20SEP2000:00:00:00
bdysys=:
Variable Base Value Compare Diff. % Diff

var1 0 0 300.000000

NOTE: Values of the following 1 variables compare unequal: var1

APPENDIX 6 – Using PROC COMPARE to Log Data Changes

Differences Between PAYROLLV02 and PAYROLLV01 17:03 Wednesday, April 23, 2003 1

The COMPARE Procedure
Comparison of WORK.PAYROLLV01 with WORK.PAYROLLV02

(Method=EXACT)

Comparison Results for Observations
Observation 2 in WORK.PAYROLLV01 not found in WORK.PAYROLLV02:
ID=26.

ID=57:
Variable Base Value Compare Diff. % Diff
SALARY 582.000000 600.000000 18.000000 3.092784

NOTE: Data set WORK.PAYROLLV01 contains 1 observations not in WORK.PAYROLLV02.
NOTE: Values of the following 1 variables compare unequal: SALARY



APPENDIX 7 – Using PROC COMPARE To Determine Changes with Update Statement

The COMPARE Procedure
Comparison of WORK.PAYROLL with WORK.INCREASE

(Method=EXACT)

NOTE: Values of the following 1 variables compare unequal: SALARY

Value Comparison Results for Variables

_________________________________________________________
|| Base Compare

ID || SALARY SALARY Diff. % Diff
_______ || _________ _________ _________ _________

||
11 || 245.0000 376.0000 131.0000 53.4694
60 || 100.0000 900.0000 800.0000 800.0000

_________________________________________________________

APPENDIX 8 – Macro to Produce Tailored PROC COMPARE Output

%macro compare (ds1 = , ds2 = , idvars = );
%****************************************************************************;
%* Get difference in number of observations in Base and Compare data sets. *;
%****************************************************************************;
%getmacro (numobs);

%local num_obs_diff;
%let num_obs_diff=%eval(%sysfunc(abs(%eval(%numobs(&ds1)) - %eval(%numobs(&ds2)))));

%************************************;
%* Local Macro Variable Constants. *;
%************************************;
%local val_diff; %* Flag indicating if a value difference exists between ds1 and ds2. ;
%let val_diff = FALSE;
%local obs_diff; %* Flag indicating if an observation difference exists between ds1 & ds2.;
%let obs_diff = FALSE;

%* Create local macro vars for the 16 possible return code values for PROC COMPARE return code;
%do i = 1 %to 16;

%local compare_sysinfo_&i; %* Bit flag ;
%local compare_condition_&i; %* Corresponding text description for the bit flag. ;

%end;

%let compare_sysinfo_1 = '1'b;
%let compare_condition_1 = "Data Set Labels Differ.";
%let compare_sysinfo_2 = '1.'b;
%let compare_condition_2 = "Data Set Types Differ.";
%let compare_sysinfo_3 = '1..'b;
%let compare_condition_3 = "Variable Has Different Informat.";
%let compare_sysinfo_4 = '1...'b;
%let compare_condition_4 = "Variable Has Different Format.";
%let compare_sysinfo_5 = '1....'b;
%let compare_condition_5 = "Variable Has Different Length.";
%let compare_sysinfo_6 = '1.....'b;
%let compare_condition_6 = "Variable Has Different Label.";
%let compare_sysinfo_7 = '1......'b;
%if %eval(&num_obs_diff)=1 %then

%let compare_condition_7 = "%upcase(&ds1) Data Set Has &num_obs_diff Obs. not in %upcase(&ds2) Data Set.";
%else %let compare_condition_7 = "%upcase(&ds1) Data Set Has &num_obs_diff Obs. Not in %upcase(&ds2) Data Set.";

%let compare_sysinfo_8 = '1.......'b;
%if %eval(&num_obs_diff)=1 %then
%let compare_condition_8 = "%upcase(&ds2) Data Set Has &num_obs_diff Observation Not in %upcase(&ds1) Data Set.";
%else %let compare_condition_8 = "%upcase(&ds2) Data Set Has &num_obs_diff Observations Not in %upcase(&ds1) Data Set.";

%let compare_sysinfo_9 = '1........'b;
%let compare_condition_9 = "%upcase(&ds1) Data Set has BY Group Not in %upcase(&ds2) Data Set.";
%let compare_sysinfo_10 = '1.........'b;



%let compare_condition_10 = "%upcase(&ds2) Data Set Has BY Group Not in %upcase(&ds1) Data Set.";
%let compare_sysinfo_11 = '1..........'b;
%let compare_condition_11 = "%upcase(&ds1) Data Set Has At Least One Variable Not in %upcase(&ds2) Data Set.";
%let compare_sysinfo_12 = '1...........'b;
%let compare_condition_12 = "%upcase(&ds2) Data Set Has At Least One Variable Not in %upcase(&ds1) Data Set.";
%let compare_sysinfo_13 = '1............'b;
%let compare_condition_13 = "At Least One Value Comparison Was Unequal.";
%let compare_sysinfo_14 = '1.............'b;
%let compare_condition_14 = "Conflicting Variable Types.";
%let compare_sysinfo_15 = '1..............'b;
%let compare_condition_15 = "BY Variables Do Not Match.";
%let compare_sysinfo_16 = '1...............'b;
%let compare_condition_16 = "Fatal Error: Comparison Not Done.";

%*********************************;
%* Print report of differences. *;
%*********************************;
%include 'var_compare.sas';
%include 'obs_compare.sas';
%include 'val_compare.sas';

%*** Get next title number.;
proc sql noprint;

select max(number) into :titlenum from sashelp.vtitle;

%*** Create VARIABLE DIFFERENCES REPORT. ;
title%eval(&titlenum+1) "VARIABLE DIFFERENCES REPORT";
title%eval(&titlenum+2) "NOTE: Base = &ds1, Compare = &ds2, ID Variables = &idvars";
%var_compare (ds1=&ds1, ds2=&ds2, idvars=&idvars)

%*** Save system return code from PROC COMPARE. ;
%let rc=&sysinfo;
%put ************ RC= &rc;

%*** Create summary report of all differences in LOG.;
data _null_;

length numdiff 8;
numdiff = 0;

page;
put;
put '--------------------------------------------------------------------------------------------';
put " Summary of Differences Between %upcase(&ds1) and %upcase(&ds2) Data Sets ";
put '--------------------------------------------------------------------------------------------';

if &rc = 0 then do;
put " There Are No Differences - %upcase(&ds1) and %upcase(&ds2) Are Identical.";

end;

%if &rc > 0 %then %do;
%do i = 1 %to 16;

if &rc = &&compare_sysinfo_&i then do;
numdiff+1;
put ' ' numdiff +(-1) ') ' &&compare_condition_&i;

end;
%end;

%end;

put '--------------------------------------------------------------------------------------------';
put;

if &rc = &compare_sysinfo_13 then do;
call symput ("val_diff",'TRUE');

end;

if &rc = &compare_sysinfo_7 or &rc = &compare_sysinfo_8 then do;
call symput ("obs_diff",'TRUE');

end;
run;

%if &obs_diff = TRUE %then %do;
title%eval(&titlenum+1) "OBSERVATION DIFFERENCES REPORT";
title%eval(&titlenum+2) "NOTE: Base = &ds1, Compare = &ds2, ID Variables = &idvars";
%obs_compare (ds1=&ds1, ds2=&ds2, idvars=&idvars)



%end;

%if &val_diff = TRUE %then %do;
title%eval(&titlenum+1) "VALUES COMPARISON REPORT";
title%eval(&titlenum+2) "NOTE: Base = &ds1, Compare = &ds2, ID Variables = &idvars";
%val_compare (ds1=&ds1, ds2=&ds2, idvars=&idvars)

%end;

%mend compare;

%*----------------------------------------------------*;
%* Macro to compare VARIABLES in two datasets. *;
%*----------------------------------------------------*;
%macro var_compare (ds1= /* Name of Base dataset */

,ds2= /* Name of Compare dataset */
,idvars= /* List ID variables for datasets - must make all obs. unique*/ );

%*** Get next title number.;
proc sql noprint;

select max(number) into :titlenum from sashelp.vtitle;

title%eval(&titlenum+1) "Variables Found in Only One of the Datasets &ds1 and &ds2";
proc compare base=&ds1

compare=&ds2 nosummary novalues listvar;
id &idvars;

run;

proc contents data=&ds1 out=_base_contents noprint; run;
proc contents data=&ds2 out=_comp_contents noprint; run;

title%eval(&titlenum+1) "Comparing PROC CONTENTS of Datasets &ds1 and &ds2";
title%eval(&titlenum+2) "To Find Variable Differences in LENGTH, TYPE, FORMAT, INFORMAT, and LABEL";
proc compare base=_base_contents

compare=_comp_contents
briefsummary transpose;

id name;
var length type format informat label;

run;
%mend var_compare;

%*----------------------------------------------------*;
%* Macro to compare OBSERVATIONS in two datasets. *;
%*----------------------------------------------------*;
%macro obs_compare (ds1= /* Name of Base dataset */

,ds2= /* Name of Compare dataset */
,idvars= /* List ID variables for datasets - must make all obs. unique*/);

%*** Print out observations in only one data set.;
proc compare base=&ds1

compare=&ds2 nosummary novalues listobs;
id &idvars;

run;

%mend obs_compare;

%*----------------------------------------------------*;
%* Macro to compare variable values in two datasets. *;
%*----------------------------------------------------*;
%macro val_compare (ds1= /* Name of Base dataset */

,ds2= /* Name of Compare dataset */
,idvars= /* List ID variables for datasets - must make all obs. unique*/ );

%*** Compare variable values in two datasets.;
proc compare base=&ds1

compare=&ds2
nosummary transpose ;

id &idvars;
run;

%mend val_compare;




